

Single Crystal Structure Analysis of a Single Sm₂Fe₁₇N₃ Particle

<u>Nobuhito Inami¹</u>, Yasuo Takeichi¹, Tetsuro Ueno², Kotaro Saito¹, Ryoko Sagayama¹, Reiji Kumai¹, Kanta Ono¹

¹High Energy Accelerator Research Organization (KEK), Japan ²National Institute for Materials Science (NIMS), Japan

Magnetic properties of Sm₂Fe₁₇N₃

Material	Sm ₂ Fe ₁₇ N ₃	Nd ₂ Fe ₁₄ B
saturation M_s (T)	1.54	1.60
anisotropy m ₀ H _a (T)	26	7
Curie temperature T_c (°C)	479	315

Properties are good as well as NdFeB.

Lattice constants are changed by an amount of inserted nitrogen. Investigation of the crystal structure is necessary to study magnetic properties.

Powder diffraction patterns of a Sm₂Fe₁7N_x sample

Crystal structure was not converged by Rietveld analysis.

Introduction

Lattice constants of $Sm_2Fe_{17}N_x$ (x = 0.0 - 2.9)

Why difference powder diffraction in same samples?

It is necessary to measure X-ray diffraction with a single crystal.

Crystal structure of $Sm_2Fe_{17}N_x$ (x = 0.5 - 2.9) Atomic site positions of each $Sm_2Fe_{17}N_x$ are same.

No refinements are performed in almost any previous reports. The reason is difficulty of crystal structure analysis with ferromagnetic powder samples.

purpose

We conduct to

- 1) develop a micromanipulation system for picking a single crystal particle,
- 2) analyze a single crystal structure of $Sm_2Fe_{17}N_x$ fine particles.

Experimental methods

micromanipulation system for picking a fine particle

It enable us to pick a particle of approximately 10 μ m.

X-ray diffraction measurement

X-ray diffractometer at KEK BL8A/B SmFeN sample with grease

incident energy (wave length): 18 keV (0.688 Å)

Clear, sharp diffraction spots were obtained.

Results and discussion

glass needle

Lattice constants of $Sm_2Fe_{17}N_x$

Single crystal structure analysis of Sm₂Fe₁₇N_x

R-factor = 1.94%, wR2 = 2.47%, Goodness of Fit = 0.831

N occupancy was slightly changed, and the value converged on 1.0. \rightarrow nitrogen = 3

Each atomic site in Sm₂Fe₁₇N₃ was determined. The Fe2 (18f) site shifts largely from Sm₂Fe₁₇.

Difference of distances between Fe-Fe and Fe-Sm

whereas that between Fe2 and Sm site expands 10.4%.

Summary

- We have developed a micromanipulation system for picking a fine particle.
 - We succeeded to pick a single crystal Sm₂Fe₁₇N₃ particle.
- We conducted X-ray diffraction of a single $Sm_2Fe_{17}N_x$ particle.
 - We also succeeded to determine a single crystal structure of a single $Sm_2Fe_{17}N_3$ particle.
- In the future, this method enable us to analyze relation between crystal structure and magnetic properties with difference amount of nitrogen.