Single Crystal Structure Analysis of a Single Sm₂Fe₁₇N₃ Particle <u>Nobuhito Inami¹</u>, Yasuo Takeichi¹, Tetsuro Ueno², Kotaro Saito¹, Ryoko Sagayama¹, Reiji Kumai¹, Kanta Ono¹ ¹High Energy Accelerator Research Organization (KEK), Japan ²National Institute for Materials Science (NIMS), Japan # Magnetic properties of Sm₂Fe₁₇N₃ | Material | Sm ₂ Fe ₁₇ N ₃ | Nd ₂ Fe ₁₄ B | |--|---|------------------------------------| | saturation M_s (T) | 1.54 | 1.60 | | anisotropy m ₀ H _a (T) | 26 | 7 | | Curie temperature T_c (°C) | 479 | 315 | Properties are good as well as NdFeB. Lattice constants are changed by an amount of inserted nitrogen. Investigation of the crystal structure is necessary to study magnetic properties. #### Powder diffraction patterns of a Sm₂Fe₁7N_x sample Crystal structure was not converged by Rietveld analysis. #### Introduction Lattice constants of $Sm_2Fe_{17}N_x$ (x = 0.0 - 2.9) Why difference powder diffraction in same samples? It is necessary to measure X-ray diffraction with a single crystal. #### Crystal structure of $Sm_2Fe_{17}N_x$ (x = 0.5 - 2.9) Atomic site positions of each $Sm_2Fe_{17}N_x$ are same. No refinements are performed in almost any previous reports. The reason is difficulty of crystal structure analysis with ferromagnetic powder samples. #### purpose #### We conduct to - 1) develop a micromanipulation system for picking a single crystal particle, - 2) analyze a single crystal structure of $Sm_2Fe_{17}N_x$ fine particles. ## Experimental methods micromanipulation system for picking a fine particle It enable us to pick a particle of approximately 10 μ m. ## X-ray diffraction measurement X-ray diffractometer at KEK BL8A/B SmFeN sample with grease incident energy (wave length): 18 keV (0.688 Å) Clear, sharp diffraction spots were obtained. ## Results and discussion glass needle ## Lattice constants of $Sm_2Fe_{17}N_x$ ## Single crystal structure analysis of Sm₂Fe₁₇N_x R-factor = 1.94%, wR2 = 2.47%, Goodness of Fit = 0.831 N occupancy was slightly changed, and the value converged on 1.0. \rightarrow nitrogen = 3 Each atomic site in Sm₂Fe₁₇N₃ was determined. The Fe2 (18f) site shifts largely from Sm₂Fe₁₇. ## Difference of distances between Fe-Fe and Fe-Sm whereas that between Fe2 and Sm site expands 10.4%. ## Summary - We have developed a micromanipulation system for picking a fine particle. - We succeeded to pick a single crystal Sm₂Fe₁₇N₃ particle. - We conducted X-ray diffraction of a single $Sm_2Fe_{17}N_x$ particle. - We also succeeded to determine a single crystal structure of a single $Sm_2Fe_{17}N_3$ particle. - In the future, this method enable us to analyze relation between crystal structure and magnetic properties with difference amount of nitrogen.