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Introduction

Methods

+ Periodic boundary condition (PBC) !
+ Cubic supercell with a=15.24Å!
+ Plane wave basis with 90Ry cutoff !
+ PBE functional !
+ T=353K (Nose thermostat) !
+ ∆t=5 a.u. (~0.12fs) !
+ Several initial configurations !
% supplemental cluster BC calc. with B3LYP !

Our target !

 Thermodynamics & kinetics of the reductive decomposition and the subsequent 
oligomerisation of the electrolyte molecules toward SEI formation on the atomic scale. !

 Most typical case: ethylene carbonate (EC) solvent & vinylene carobonate (VC) additive. !
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Conclusion

(a)  EC only case: EC radical oligomerisation 
following 2e reduction will be the source 
of SEI. !

!

(b)  A conventional pathway for the EC/VC 
system, namely oligomerisation of VC 
anion radical sacrificially reduced. !

(c)  A new mechanism with 1e reduction only 
for the EC/VC system, proposed in this 
work. VC passivates the EC anion radical. !
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Future computational design of novel electrolytes (solvents & additives) !
 with higher performance as well as higher safety.!
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 “Solid Electrolyte Interface (SEI)” is formed at the first charging !
 SEI plays a role of electronic insulator but transporting Li+ ions. !
 Quality of SEI controls capacity, power & safety, cycle life of LIB. !
 Characterisation & control of SEI is crucial for future development of LIB with high performance & high safety.

Before first charging After first charging

Solid Electrolyte Interphase (SEI) Thermal runaway

 EC system (32EC) & !
 EC/VC system (31EC/VC) !
   with/without Li+ ion.

 Blue-moon ensemble for free energy profile

Constrained MD w.r.t. !
 reaction coordinate !

Potential of mean force

Free energy profile

Tuned CPMD for K computer
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One electron (1e) reductive decomposition
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CE-O2 breaking

CC-O2 breaking

 Reductive decomposition of EC

 Reductive decomposition of VC

CE-O2 : ∆A# = 4.8, ∆A= -24.5 (kcal/mol) !

! Li+ - O1O2C2O2C2H4

CC-O2 : ∆A# ~ 5, ∆E= -21~-23 (kcal/mol) !

! CO evolution

-21.8 kcal/mol -23.3 kcal/mol

% Conventional = CE-O2
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Solvation & Reduction

ECVC

 Before reduction

 After reduction

Li+-4EC < Li+-3ECVC by 9.6 kcal/mol !
VC is not coordinating to Li+.

Li+-3ECVC- < Li+-3ECEC- < VC- < EC- !
Electron first goes to VC (not coordinating to Li+)!
! Transfer to EC coordinating to Li+ !

! VC- is migrating into the solvation shell !

W

Two electron (2e) reductive decomposition

a b c

d e

# a,b: Reactant =  undecomposed EC- !

   CO evolution !
!

# c: Reactant = OE-EC-!

   C2H4 and CO3
2- evolution !

consistent with experiments !
!

# d,e: Reactant = undecomposed VC !
   CO evolution !
   similar to 1e reductive decomposition !
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Radical attack under 1e condition
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# VC radical + intact EC: endothermic !
# EC radical + intact VC: exothermic !
   ∆A# = 9.7, ∆A= -16.2 (kcal/mol) !

Role of VC additive is to passivate the EC anion radical, !
 not sacrificial reductive decomposition & oligomerisation.
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Lithium Ion Battery (LIB) is a central target to resolve current energy issues.

 Reduction condition model !

 DFT studies on reductive decompositions already exist. !
(Cluster DFT with PCM, Periodic DFT-MD)!

SEI formation mechanism NOT established yet. !
NO free energy analysis!
NO evaluation of activation free energies !
Only a few sets of electrolyte investigated. !
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Survey: DFT studies

EC VC

DFT Car-Parrinello MD

(Low potential model V V vs. Li/Li+ !

 Constant number of electrons.) !

+ Hybrid parallel calc.!
  (Tuning achieved a rather high efficiency )!
+ Parallel Blue-moon ensemble (statCPMD@NIMS) !
+ Parallel I/O (statCPMD@NIMS)!

10 petaflops supercomputer !

EC can be reduced even in the presence of VC. !

Because the present VC mechanism is realized via 1e reduction, the irreversible capacity at 
the SEI formation will decrease, consistent with the experiments. !
!

These results not only reveal the primary role of the VC additive in the EC solvent, but 
also provide a new fundamental perspective for the reductive decomposition of carbonate-
based electrolyte near the negative electrode. !

Summary of the reductive decomposition 
reactions of EC and EC/VC systems. !


