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Lithium Ion Battery (LIB) is a central target to resolve current energy issues.
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M “Solid Electrolyte Interface (SEI)” is formed at the first charging
M SEI plays a role of electronic insulator but transporting Li+ ions.
B Quality of SEI controls capacity, power & safety, cycle life of LIB.

B Characterisation & control of SEI is crucial for future development of LIB with high performance & high safety.

Our target:

B Thermodynamics & kinetics of the reductive decomposition and the subsequent
oligomerisation of the electrolyte molecules toward SEI formation on the atomic scale.
B Most typical case: ethylene carbonate (EC) solvent & vinylene carobonate (VC) additive.

‘ Survey: DFT studies

Y. Wang, S. Nakamura, M. Ue, P. B. Balbuena

JACSI123, 11708-11718 (2001).
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Y. Wang, S. Nakamura, S. Tasaki, P. B. Balbuena

JACS124, 4408-4421 (2002).

[J DFT studies on reductive decompositions already exist.

(Cluster DFT with PCM, Periodic DFT-MD)

M SEI formation mechanism NOT established yet.

B NO free energy analysis

B NO evaluation of activation free energies
H Only a few sets of electrolyte investigated.

K. Leung, JPCC116, 9852-9861,
(2012)

K. Leung, J. L. Budzien, PCCP 12,
6583-6586 (2010).
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B Reduction condition model

(Low potential model:V~0 V vs. Li/Li*
Constant number of electrons.)

B DFT Car-Parrinello MD
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+ Periodic boundary condition (PBC)

supercell

+ Several initial configurations

% supplemental cluster BC calc. with B3LYP
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512 MPI

M Blue-moon ensemble for free energy profile M Tuned CPMD for K computer

19 s

4096 cores

1024MPT

226s

10 petaflops supercomputer 8192 cores

+ Hybrid parallel calc.

(Tuning achieved a rather high efficiency )
+ Parallel Blue-moon ensemble (statCPMD@NIMS)
+ Parallel I/0 (statCPMD@NIMS)

Solvation & Reduction

\One electron (le) reductive decomposition \

B Before reduction
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Conclusion

Summary of the reductive decomposition
reactions of EC and EC/VC systems.
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Because the present VC mechanism is realized via le reduction, the irreversible capacity at
the SEI formation will decrease, consistent with the experiments.
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(b) A conventional pathway for the EC/VC
system, namely oligomerisation of VC
anion radical sacrificially reduced.
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(c) A new mechanism with le reduction only
for the EC/VC system, proposed in this
work. VC passivates the EC anion radical.

These results not only reveal the primary role of the VC additive in the EC solvent, but
also provide a new fundamental perspective for the reductive decomposition of carbonate-
based electrolyte near the negative electrode.

{

Future computational design of novel electrolytes (solvents & additives)

with higher performance as well as higher safety. /
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‘Radical attack under le condition ‘
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Role of VC additive is to passivate the EC anion radical,
not sacrificial reductive decomposition & oligomerisation.
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